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Transition-metal chemistry allows chemists to design syn­
thetic strategies that are different from those observed in nature 
to construct complex molecules, such as macrolide antibiotics,1 

polyether antibiotics,2 and marine toxins.3 The biosynthesis of 
polyketide natural products, for example, involves multistep 
assembly of a polycarbonyl skeleton followed by manipulation 
of the oxygen functions.4 Alternatively, using the osmium-
based, Sharpless asymmetric dihydroxylation (AD) reaction,5 

one can selectively place the oxygen functions on a naked 
carbon skeleton, as has been recently demonstrated by our short 
syntheses of (-t-)-aspicilin and antibiotic (—)-AZ6771B.6 

Of particular interest are members of the rapidly growing 
family of the annonaceous acetogenins, which are characterized 
by long, polyoxygenated carbon skeletons. Many of these 
polyketide, fatty acid derivatives, isolated from plants in the 
Annonaceae family, have shown cytotoxic, antitumor, anti­
malarial, immunosuppressive, pesticidal, and antifeedant activi­
ties.7 Although more than 100 members of this family have 
already been discovered, information concerning their absolute 
configuration by either physical methods8 or total synthesis9 is 
still quite limited. We have recently used the above-mentioned 
strategy to prepare (+)-solamin and (+)-reticulatacin, the first 
members of this family to be synthesized in their naturally 
occurring stereochemistry.'0 Here we proceed one step further 
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and show that merging the excellent enantioselectivity of the 
osmium-based AD reaction with the high stereoselectivity of 
Kennedy's rhenium-based oxidative cyclization technique11 

creates a powerful methodology for asymmetric synthesis of 
polyoxygenated aliphatic structures, with immediate applications 
in the annonaceous acetogenin family. 

Aiming at a general approach to monotetrahydrofuranoid 
acetogenins, we took advantage of the significantly higher 
reactivity of AD reagents toward (£)-alkenes relative to (Z)-
alkenes,5 which enables selective dihydroxylation of the former 
in the presence of the latter. Thus, reaction of the (£,Z)-diene 
212 with AD-mix-/3 resulted in selective oxidation of the E 
double bond to give hydroxylactone 3.13 Oxidative cyclization 
with dirhenium heptoxide and periodic acid (Scheme 1) 
produced 4 as a single diastereomer in 75% yield.14 Apparently, 
this oxidation with Re(VII) is far more selective than that with 
Cr(VI) oxide, which is incompatible with primary and secondary 
alcohols either in the starting material or in the product and 
may even degrade the carbon skeleton.15 

Compound 4 provides a convenient entry to the relatively 
rare members of monotetrahydrofuranoid acetogenins, which 
are characterized by a threo-fra«i-erythro stereochemistry 
around the THF ring,7 e.g., annonacin A,16 cis- and trans-
annonacin-A-one,17 jetein and otivarin,18 cis- and trans-bxxlla.-
talicinone,19 and squamostatin A.20 Inversion of the configu­
ration of the carbinol center21 in 4 produced alcohol 5, which 
is a useful intermediate in the synthesis of the more abundant 
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threo-frww-threo members. Alcohol 5 has already been de­
scribed10 in our synthesis of solamin (6) and retieulataein (7). 
Scheme 1, therefore, represents a formal total synthesis of 6 
and 7. 

The functional similarity between the starting material and 
the product (both having one free hydroxyl group) provides 
attractive synthetic opportunities to generate many asymmetric 
centers in a single step via tandem oxidative cyclizations of 
polyolefins. To check this we synthesized the (Z,Z,£)-triene 7 
via Wittig olefination of aldehyde 1, followed by catalytic 
hydrogenation of the resultant ynediene, 6, over Lindlar's 
catalyst (Scheme 2). Dihydroxylation of 7 with AD-mix-/? 
produced hydroxylactone 8 as the major product. Reaction of 
8 with a mixture of Re2O? and 2,6-lutidine afforded the 
monocyclized product 9 (Scheme 2).22 Treatment of the latter 
with the more reactive mixture, Re2O? (2 equiv) and H5IO6 (3 
equiv) in dry dichloromethane, for 1 h indeed effected the 
second oxidative cyclization, producing compound 10 in 53% 
yield. Both cyclizations could be carried out in a single step 
by treatment of dienol 8 with Re2O? (3 equiv) and H5IO6 (4 
equiv) in dry dichloromethane for 2 h, producing the bis-THF 
product 10 in 25% yield. Even under these conditions, the first 
cyclization is approximately one order of magnitude faster than 
the subsequent one, offering a synthetic advantage of stopping 
the reaction after the first step. This differential activity could 
mirror inhibition by the polyoxygenated product which, by 
functioning as a polydentate ligand, inhibits further coordination 
of rhenium to the next olefinic bond. 

Both compounds 9 and 10 are useful intermediates for 
synthesis of naturally occurring acetogenins, and bistetrahydro-
furanoid ones in particular. For example, compound 9 could 
be a key intermediate in the synthesis of bullatenin (13),23 and 

compound 10 could be used in the synthesis of trilobacin (14).24 

Since the absolute configuration of 11 and 12 is unknown, we 
are currently preparing both enantiomeric forms of each, using 
either AD-mix-a or AD-mix-/J for dihydroxylation of 7. 

In conclusion, the advantage of merging the Sharpless AD 
reaction with the Kennedy oxidative cyclization for asymmetric 
oxygenation of polyenes has been demonstrated here by an 
efficient preparation of key intermediates for synthesis of 
naturally occurring annonaceous acetogenins. A formal asym­
metric synthesis of solamin and retieulataein has been achieved. 
The total synthesis of bullatenin and trilobacin will be reported 
shortly. 
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